ELECTRIC KILN FIRING COST GUIDE

EXAMPLE MITCHELL KILN 20AMP

INTRODUCTION

This guide provides a comprehensive method to calculate the firing costs of an electric kiln, ensuring that artists and craftsmen can manage their resources effectively.

REQUIRED INFORMATION

To proceed with the estimation, gather the following details:

- A (Amps): Check the kiln's nameplate.
- V (Volts): Use 230 for 220 or 240 volts.
- F (Firing Time): Multiply the total hours by 0.6, considering the kiln operates at full power only for a portion of the time.
- C (Cost per Kilowatt-hour): Refer to your electricity bill for this rate.

CALCULATION FORMULA

Utilize the formula below to estimate the firing cost:{Firing Cost} = $\{A \times V \times F \times 0.6 \times C\}$

FXAMPIF

For a kiln with 20 Amps, 230 Volts, a firing time of 8 hours, and an electricity rate of 0.25 per Kilowatt-hour (Firing Cost) = $20 \times 230 \times 8 \times 0.6 \times 0.25 = 5.52$

ADDITIONAL CONSIDERATIONS

- Extended Firing Time: While a longer firing time does increase the energy cost, the impact is mitigated by the 0.6 factor in the "F" parameter.
- Accuracy: For more precise results, break down the firing time into smaller segments and calculate each separately.
- Example for Drying: A 3-hour drying at the lowest setting might use a 0.1 factor for "F", resulting in different cost calculations for various firing stages.